8 research outputs found

    Evaluation of Power System Reliability Considering Direct Load Control Effects

    Get PDF
    With the development of deregulated power systems and increase of prices in some hours of day, demand side management programs were noticed more by customers. In restructured power systems, DSM programs are introduced as DEMAND RESPONSE. In this paper we try to evaluate the effect of DR programs on power system reliability and nodal reliability. In order to reach to this target, Direct Load Control program, as the most common demand response program, is considered. Effects of demand response programs on system and nodal reliability of a deregulated power system are investigated using direct load control and economic load model, DC power-flow-based optimal load curtailment objective and reliability evaluation techniques. The proposed method is evaluated by numerical studies based on a small reliability test system (RBTS), and simulation results show that demand response program can improve the system and nodal reliability.DOI:http://dx.doi.org/10.11591/ijece.v3i2.229

    Wearable Devices in Health Monitoring from the Environmental towards Multiple Domains: A Survey

    Get PDF
    The World Health Organization (WHO) recognizes the environmental, behavioral, physiological, and psychological domains that impact adversely human health, well-being, and quality of life (QoL) in general. The environmental domain has significant interaction with the others. With respect to proactive and personalized medicine and the Internet of medical things (IoMT), wearables are most important for continuous health monitoring. In this work, we analyze wearables in healthcare from a perspective of innovation by categorizing them according to the four domains. Furthermore, we consider the mode of wearability, costs, and prolonged monitoring. We identify features and investigate the wearable devices in the terms of sampling rate, resolution, data usage (propagation), and data transmission. We also investigate applications of wearable devices. Web of Science, Scopus, PubMed, IEEE Xplore, and ACM Library delivered wearables that we require to monitor at least one environmental parameter, e.g., a pollutant. According to the number of domains, from which the wearables record data, we identify groups: G1, environmental parameters only; G2, environmental and behavioral parameters; G3, environmental, behavioral, and physiological parameters; and G4 parameters from all domains. In total, we included 53 devices of which 35, 9, 9, and 0 belong to G1, G2, G3, and G4, respectively. Furthermore, 32, 11, 7, and 5 wearables are applied in general health and well-being monitoring, specific diagnostics, disease management, and non-medical. We further propose customized and quantified output for future wearables from both, the perspectives of users, as well as physicians. Our study shows a shift of wearable devices towards disease management and particular applications. It also indicates the significant role of wearables in proactive healthcare, having capability of creating big data and linking to external healthcare systems for real-time monitoring and care delivery at the point of perception

    Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations

    No full text
    In conventional low-voltage grids, energy-storage devices are mainly driven by final consumers to correct peak consumption or to protect against sources of short-term breaks. With the advent of microgrids and the development of energy-storage systems, the use of this equipment has steadily increased. Distributed generations (DGs), including wind-power plants as a renewable energy source, produces vacillator power due to the nature of variable wind. Microgrids have output power fluctuations, which can cause devastating effects such as frequency fluctuations. Storage can be used to fix this problem. In this paper, a grid-connected wind turbine and a photovoltaic system are investigated considering the atmospheric conditions and wind-speed variations, and a control method is proposed. The main purpose of this paper is to optimize the capacity of energy-storage devices to eliminate power fluctuations in the microgrid. Finally, the conclusion shows that, in microgrids with supercapacitors, the optimal capacity of microgrid supercapacitors is determined. This method of control, utilizing the combined energy-storage system of the battery supercapacitor, in addition to reducing the active power volatility of the wind turbine and photovoltaic generation systems, also considers the level of battery protection and reduction in reactive-power fluctuations. In the proposed control system, the DC link in the energy-storage systems is separate from most of the work conducted, which can increase the reliability of the whole system. The simulations of the studied system are performed in a MATLAB software environment

    Multivariable predictive control considering time delay for load-frequency control in multi-area power systems

    No full text
    In this paper, a multivariable model based predictive control (MPC) is proposed for the solution of load frequency control (LFC) in a multi-area interconnected power system. The proposed controller is designed to consider time delay, generation rate constraint and multivariable nature of the LFC system, simultaneously. A new formulation of the MPC is presented to compensate time delay. The generation rate constraint is considered by employing a constrained MPC and economic allocation of the generation is further guaranteed by an innovative modification in the predictive control objective function. The effectiveness of proposed scheme is verified through time-based simulations on the standard 39-bus test system and the responses are then compared with the proportional-integral controller. The evaluation of the results reveals that the proposed control scheme offers satisfactory performance with fast responses

    A demand response based solution for LMP management in power markets

    No full text
    a b s t r a c t In recent years, most of the countries around the world have gone through the power system restructuring process. Along with this restructuring in power market there are some issues like LMP problems that need to be solved base on demand response. In this article, demand-side management (DSM) programs have been effective to address LMPs in the market and system operators experience throughout their day-to-day activities. In particularly, these programs can help independent system operator (ISO) to reduce price volatility during peak demand hours. For achieving this purpose, a multi-objective optimal power flow is proposed to study the impact of a model for a demand response program on price spikes. Actually a new framework using demand response program was presented for price spikes reduction. As a case study for the formulation, the IEEE 9-bus, load curve of Mid-Atlantic region of the New York network is used to compare local prices in the system with and without emergency demand response program (EDRP). The study results demonstrate the effectiveness of these programs in an electricity market and showing them as appropriate tools in managing the LMPs of the power market more efficiently

    Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations

    No full text
    In conventional low-voltage grids, energy-storage devices are mainly driven by final consumers to correct peak consumption or to protect against sources of short-term breaks. With the advent of microgrids and the development of energy-storage systems, the use of this equipment has steadily increased. Distributed generations (DGs), including wind-power plants as a renewable energy source, produces vacillator power due to the nature of variable wind. Microgrids have output power fluctuations, which can cause devastating effects such as frequency fluctuations. Storage can be used to fix this problem. In this paper, a grid-connected wind turbine and a photovoltaic system are investigated considering the atmospheric conditions and wind-speed variations, and a control method is proposed. The main purpose of this paper is to optimize the capacity of energy-storage devices to eliminate power fluctuations in the microgrid. Finally, the conclusion shows that, in microgrids with supercapacitors, the optimal capacity of microgrid supercapacitors is determined. This method of control, utilizing the combined energy-storage system of the battery supercapacitor, in addition to reducing the active power volatility of the wind turbine and photovoltaic generation systems, also considers the level of battery protection and reduction in reactive-power fluctuations. In the proposed control system, the DC link in the energy-storage systems is separate from most of the work conducted, which can increase the reliability of the whole system. The simulations of the studied system are performed in a MATLAB software environment

    A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems

    No full text
    This study designed a system consisting of a photovoltaic system and a DC-DC boost converter with buck-boost inverter. A multi-error method, based on model predictive control (MPC), is presented for control of the buck-boost inverter. Incremental conductivity and predictive control methods have also been used to track the maximum power of the photovoltaic system. Due to the fact that inverters are in the category of systems with fast dynamics, in this method, by first determining the system state space and its discrete time model, a switching algorithm is proposed to reduce the larger error for the converter. By using this control method, in addition to reducing the total harmonic distortion (THD), the inverter voltage reaches the set reference value at a high speed. To evaluate the performance of the proposed method, the dynamic performance of the converter at the reference voltage given to the system was investigated. The results of system performance in SIMULINK environment were simulated and analyzed by MATLAB software. According to the simulation results, we can point out the advantage of this system in following the reference signal with high speed and accuracy
    corecore